Joint Target Tracking and Classification via Sequential Monte Carlo Filtering
نویسنده
چکیده
A sequential Monte Carlo algorithm is suggested for joint maneuvering target tracking and classification, based on kinematic measurements. A mixture Kalman filter is designed for two-class identification of air targets: commercial and military aircraft. Speed and acceleration constraints are imposed on the target behaviour models in order to improve the classification process. The class is modeled as an independent random variable, which can take values over the discrete class space with an equal probability. As a result, the multiple-model structure in the class space, required for reliable classification, is achieved. The performance of the proposed algorithm is evaluated by simulation over typical target scenarios.
منابع مشابه
Sequential Monte Carlo Algorithms for Joint Target Tracking and Classification Using Kinematic Radar Information
This paper considers the problem of joint maneuvering target tracking and classification. Based on recently proposed Monte Carlo techniques, a multiple model (MM) particle filter and a mixture Kalman filter (MKF) are designed for two-class identification of air targets: commercial and military aircraft. The classification task is carried out by processing radar measurements only, no class (feat...
متن کاملRao-Blackwellized particle filter for multiple target tracking
In this article we propose a new Rao-Blackwellized particle filtering based algorithm for tracking an unknown number of targets. The algorithm is based on formulating probabilistic stochastic process models for target states, data associations, and birth and death processes. The tracking of these stochastic processes is implemented using sequential Monte Carlo sampling or particle filtering, an...
متن کاملSevere-Dynamic Tracking Problems Based on Lower Particles Resampling
For a target as it with large-dynamic-change which is still challenging for existing methods to perform robust tracking; the sampling-based Bayesian filtering often suffer from computational complexity associated with large number of particle demanded and weighing multiple hypotheses. Specifically, this work proposes a neural auxiliary Bayesian filtering scheme based on Monte Carlo resampling t...
متن کاملTracking multiple targets via Particle Based Belief Propagation
Tracking multiple visual targets involving occlusion and varying number problems is a challenging problem in computer vision. This paper presents a summary of recent works on multiple targets tracking (MTT) in video done by a research group of Institute of Artificial Intelligence and Robotics, XJTU. The summary is given in two parts. The first part presents their work on modelling interactions ...
متن کاملRoad-Constrained Target Tracking and Identification Using a Particle Filter
Sequential Monte Carlo methods have attracted the attention of the tracking community as a solution to Bayesian estimation particularly for nonlinear problems. Several attributes of particle filters support their use in jointly tracking and identifying ground targets in a road-constrained network. First, since the target dynamics are simulated, propagating a target within a constrained state sp...
متن کامل